Amazon logo When you click the Amazon logo to the left of any citation and purchase the book (or other media) from, MIT OpenCourseWare will receive up to 10% of this purchase and any other purchases you make during that visit. This will not increase the cost of your purchase. Links provided are to the US Amazon site, but you can also support OCW through Amazon sites in other regions. Learn more.

The topics follow the order of the required textbook:

Amazon logo Cox, David, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms. 3rd ed. Undergraduate Texts in Mathematics. New York, NY: Springer, 2007. ISBN: 9780387356518.

Portions of the book are online .

1 Polynomials and affine space, affine varieties Sections 1-1 and 1-2
2 Parameterizations of affine varieties, ideals Sections 1-3 and 1-4
3 Polynomials of one variable, orderings on the monomials in k[x1,...,xn] Sections 1-5, 2-1, and 2-2
4 A division algorithm in k[x1,...,xn], monomial ideals and Dickson's lemma Sections 2-3 and 2-4
5 The Hilbert basis theorem and Groebner bases, properties of Groebner bases Sections 2-5 and 2-6
6 Buchberger's algorithm, first applications of Groebner bases Sections 2-7 and 2-8
7 The elimination and extension theorems, the geometry of elimination Sections 3-1 and 3-2
8 Implicitization, singular points and envelopes Sections 3-3 and 3-4
9 Unique factorization and resultants Section 3-5
10 Resultants and the extension theorem, the nullstellensatz Sections 3-6 and 4-1
11 Radical ideals and the ideal-variety correspondence, sums, products, and intersections of ideal Sections 4-2 and 4-3
12 Zariski closure and quotients of ideals, irreducible varieties and prime ideals Sections 4-4 and 4-5
13 Decomposition of a variety into irreducibles, polynomial mappings Sections 4-6 and 5-1
14 Quotients of polynomials R, algorithmic computations in k[x1,...,xn]/I Sections 5-2 and 5-3
15 The coordinate ring of an affine variety, rational functions on a variety Sections 5-4 and 5-5
16 Proof of the Closure theory, geometric description of robots, the forward kinematics problem Sections 5-6, 6-1, and 6-2
17 The inverse kinematic problem and motion planning, automatic geometric theorem proving Sections 6-3 and 6-4
18 Wu's method, symmetric polynomials Sections 6-5 and 7-1
19 Finite matrix groups and rings of invariants, generators for the ring of invariants Sections 7-2 and 7-3
20 Relations among generators and the geometry of orbits, the projective plane, projective space and projective varieties Sections 7-4, 8-1, and 8-2
21 The projective algebra-geometry dictionary, the projective closure of an affine variety Sections 8-3 and 8-4
22 Projective elimination theory Section 8-5
23 The geometry of quadric hypersurfaces, the variety of a monomial ideal Sections 8-6 and 9-1
24 The complement of a monomial ideal, the Hilbert function and the dimension of a variety Sections 9-2 and 9-3
25 Elementary properties of dimension, dimension and algebraic independence Sections 9-4 and 9-5
26 Dimension and nonsingularity, the tangent cone Sections 9-6 and 9-7