LECTURE 13

LECTURE OUTLINE

• Directional derivatives of one-dimensional convex functions
• Directional derivatives of multi-dimensional convex functions
• Subgradients and subdifferentials
• Properties of subgradients
ONE-DIMENSIONAL DIRECTIONAL DERIVATIVES

• Three slopes relation for a convex $f : \mathbb{R} \rightarrow \mathbb{R}$:

\[
\frac{f(y) - f(x)}{y - x} \leq \frac{f(z) - f(x)}{z - x} \leq \frac{f(z) - f(y)}{z - y}
\]

• Right and left directional derivatives exist

\[
f^+(x) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha) - f(x)}{\alpha}
\]
\[
f^-(x) = \lim_{\alpha \downarrow 0} \frac{f(x) - f(x - \alpha)}{\alpha}
\]
MULTI-DIMENSIONAL DIRECTIONAL DERIVATIVES

- For a convex $f : \mathbb{R}^n \mapsto \mathbb{R}$

\[
f'(x; y) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha y) - f(x)}{\alpha},
\]

is the directional derivative at x in the direction y.

- Exists for all x and all directions.

- f is differentiable at x if $f'(x; y)$ is a linear function of y denoted by

\[
f'(x; y) = \nabla f(x)' y,
\]

where $\nabla f(x)$ is the gradient of f at x.

- Directional derivatives can be defined for extended real-valued convex functions, but we will not pursue this topic (see the book).
SUBGRADIENTS

- Let \(f : \mathbb{R}^n \mapsto \mathbb{R} \) be a convex function. A vector \(d \in \mathbb{R}^n \) is a subgradient of \(f \) at a point \(x \in \mathbb{R}^n \) if
 \[
 f(z) \geq f(x) + (z - x)'d, \quad \forall \ z \in \mathbb{R}^n.
 \]

- \(d \) is a subgradient if and only if
 \[
 f(z) - z'd \geq f(x) - x'd, \quad \forall \ z \in \mathbb{R}^n
 \]
 so \(d \) is a subgradient at \(x \) if and only if the hyper-plane in \(\mathbb{R}^{n+1} \) that has normal \((-d, 1) \) and passes through \((x, f(x))\) supports the epigraph of \(f \).
SUBDIFFERENTIAL

• The set of all subgradients of a convex function f at x is called the subdifferential of f at x, and is denoted by $\partial f(x)$.

• Examples of subdifferentials:

\[f(x) = |x| \]
\[f(x) = \max\{0, \frac{1}{2}(x^2 - 1)\} \]

\[\partial f(x) \]

\[\partial f(x) \]
PROPERTIES OF SUBGRADIENTS I

- $\partial f(x)$ is nonempty, convex, and compact.

Proof: Consider the min common/max crossing framework with

$$M = \{(u, w) \mid u \in \mathbb{R}^n, f(x + u) \leq w\}.$$

Min common value: $w^* = f(x)$. Crossing value function is $q(\mu) = \inf_{(u, w) \in M} \{w + \mu' u\}$. We have $w^* = q^* = q(\mu)$ iff $f(x) = \inf_{(u, w) \in M} \{w + \mu' u\}$, or

$$f(x) \leq f(x + u) + \mu' u, \quad \forall u \in \mathbb{R}^n.$$

Thus, the set of optimal solutions of the max crossing problem is precisely $-\partial f(x)$. Use the Min Common/Max Crossing Theorem II: since the set

$$D = \{u \mid \text{there exists } w \in \mathbb{R} \text{ with } (u, w) \in M\} = \mathbb{R}^n$$

contains the origin in its interior, the set of optimal solutions of the max crossing problem is nonempty, convex, and compact. **Q.E.D.**
PROPERTIES OF SUBGRADIENTS II

• For every \(x \in \mathbb{R}^n \), we have
 \[
 f'(x; y) = \max_{d \in \partial f(x)} y'd, \quad \forall \ y \in \mathbb{R}^n.
 \]

• \(f \) is differentiable at \(x \) with gradient \(\nabla f(x) \), if and only if it has \(\nabla f(x) \) as its unique subgradient at \(x \).

• If \(f = \alpha_1 f_1 + \cdots + \alpha_m f_m \), where the \(f_j : \mathbb{R}^n \rightarrow \mathbb{R} \) are convex and \(\alpha_j > 0 \),
 \[
 \partial f(x) = \alpha_1 \partial f_1(x) + \cdots + \alpha_m \partial f_m(x).
 \]

• Chain Rule: If \(F(x) = f(Ax) \), where \(A \) is a matrix,
 \[
 \partial F(x) = A' \partial f(Ax) = \{ A'g \mid g \in \partial f(Ax) \}.
 \]

• Generalizes to functions \(F(x) = g(f(x)) \), where \(g \) is smooth.
ADDITIONAL RESULTS ON SUBGRADIENTS

• Danskin’s Theorem: Let Z be compact, and \(\phi : \mathbb{R}^n \times Z \mapsto \mathbb{R} \) be continuous. Assume that \(\phi(\cdot, z) \) is convex and differentiable for all \(z \in Z \). Then the function \(f : \mathbb{R}^n \mapsto \mathbb{R} \) given by

\[
f(x) = \max_{z \in Z} \phi(x, z)
\]

is convex and for all \(x \)

\[
\partial f(x) = \text{conv}\{\nabla_x \phi(x, z) \mid z \in Z(x)\}.
\]

• The subdifferential of an extended real valued convex function \(f : \mathbb{R}^n \mapsto (-\infty, \infty] \) is defined by

\[
\partial f(x) = \{d \mid f(z) \geq f(x) + (z - x)'d, \ \forall \ z \in \mathbb{R}^n\}.
\]

• \(\partial f(x) \), is closed but may be empty at relative boundary points of \(\text{dom}(f) \), and may be unbounded.

• \(\partial f(x) \) is nonempty at all \(x \in \text{ri}(\text{dom}(f)) \), and it is compact if and only if \(x \in \text{int}(\text{dom}(f)) \). The proof again is by Min Common/Max Crossing II.