LECTURE 24

LECTURE OUTLINE

• Subgradient Methods
• Stepsize Rules and Convergence Analysis

• Consider a generic convex problem \(\min_{x \in X} f(x) \),
 where \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is a convex function and \(X \) is a closed convex set, and the subgradient method

\[
x_{k+1} = \left[x_k - \alpha_k g_k \right]^+, \\
\]

where \(g_k \) is a subgradient of \(f \) at \(x_k \), \(\alpha_k \) is a positive stepsize, and \([\cdot]^+ \) denotes projection on the set \(X \).

• Incremental version for problem \(\min_{x \in X} \sum_{i=1}^{m} f_i(x) \)

\[
x_{k+1} = \psi_{m,k}, \quad \psi_{i,k} = \left[\psi_{i-1,k} - \alpha_k g_{i,k} \right]^+, \ i = 1, \ldots, m
\]

starting with \(\psi_{0,k} = x_k \), where \(g_{i,k} \) is a subgradient of \(f_i \) at \(\psi_{i-1,k} \).
ASSUMPTIONS AND KEY INEQUALITY

- **Assumption:** (Subgradient Boundedness)
 \[\|g\| \leq C_i, \quad \forall g \in \partial f_i(x_k) \cup \partial f_i(\psi_{i-1,k}), \quad \forall i, k, \]
 for some scalars \(C_1, \ldots, C_m\). (Satisfied when the \(f_i\) are polyhedral as in integer programming.)

- **Key Lemma:** For all \(y \in X\) and \(k,\)
 \[
 \|x_{k+1} - y\|^2 \leq \|x_k - y\|^2 - 2\alpha_k \left(f(x_k) - f(y) \right) + \alpha_k^2 C^2,
 \]
 where
 \[
 C = \sum_{i=1}^{m} C_i
 \]
 and \(C_i\) is as in the boundedness assumption.

- **First Insight:** For any \(y\) that is better than \(x_k\), the distance to \(y\) is improved if \(\alpha_k\) is small enough:
 \[
 0 < \alpha_k < \frac{2(f(x_k) - f(y))}{C^2}
 \]
PROOF OF KEY LEMMA

• For each f_i and all $y \in X$, and i, k

$$\|\psi_{i,k} - y\|^2 = \|[\psi_{i-1,k} - \alpha_k g_{i,k}]^+ - y\|^2$$

$$\leq \|\psi_{i-1,k} - \alpha_k g_{i,k} - y\|^2$$

$$\leq \|\psi_{i-1,k} - y\|^2 - 2\alpha_k g'_{i,k}(\psi_{i-1,k} - y) + \alpha_k^2 C_i^2$$

$$\leq \|\psi_{i-1,k} - y\|^2 - 2\alpha_k (f_i(\psi_{i-1,k}) - f_i(y)) + \alpha_k^2 C_i^2$$

By adding over i, and strengthening,

$$\|x_{k+1} - y\|^2 \leq \|x_k - y\|^2 - 2\alpha_k (f(x_k) - f(y))$$

$$+ 2\alpha_k \sum_{i=1}^{m} C_i \|\psi_{i-1,k} - x_k\| + \alpha_k^2 \sum_{i=1}^{m} C_i^2$$

$$\leq \|x_k - y\|^2 - 2\alpha_k (f(x_k) - f(y))$$

$$+ \alpha_k^2 \left(2 \sum_{i=2}^{m} C_i \left(\sum_{j=1}^{i-1} C_j \right) + \sum_{i=1}^{m} C_i^2 \right)$$

$$= \|x_k - y\|^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 \left(\sum_{i=1}^{m} C_i \right)^2$$

$$= \|x_k - y\|^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 C^2.$$
STEPSIZE RULES

• Constant Stepsize $\alpha_k \equiv \alpha$:
 - By key lemma with $f(y) \approx f^*$, it makes progress to the optimal if $0 < \alpha < \frac{2(f(x_k) - f^*)}{C^2}$, i.e., if
 \[f(x_k) > f^* + \frac{\alpha C^2}{2}\]

• Diminishing Stepsize $\alpha_k \to 0$, $\sum_k \alpha_k = \infty$:
 - Eventually makes progress (once α_k becomes small enough). Can show that
 \[\lim \inf_{k \to \infty} f(x_k) = f^*\]

• Dynamic Stepsize $\alpha_k = \frac{f(x_k) - f_k}{C^2}$ where $f_k = f^*$ or (more practically) an estimate of f^*:
 - If $f_k = f^*$, makes progress at every iteration.
 If $f_k < f^*$ it tends to oscillate around the optimum. If $f_k > f^*$ it tends towards the level set $\{x \mid f(x) \leq f_k\}$.
CONSTANT STEPSIZE ANALYSIS

• Proposition: For $\alpha_k \equiv \alpha$, we have

$$\liminf_{k \to \infty} f(x_k) \leq f^* + \frac{\alpha C^2}{2},$$

where $C = \sum_{i=1}^{m} C_i$ (in the case where $f^* = -\infty$, we have $\liminf_{k \to \infty} f(x_k) = -\infty$.)

• Proof by contradiction. Let $\epsilon > 0$ be s.t.

$$\liminf_{k \to \infty} f(x_k) > f^* + \frac{\alpha C^2}{2} + 2\epsilon,$$

and let $\hat{y} \in X$ be such that

$$\liminf_{k \to \infty} f(x_k) \geq f(\hat{y}) + \frac{\alpha C^2}{2} + 2\epsilon.$$

For all k large enough, we have

$$f(x_k) \geq \liminf_{k \to \infty} f(x_k) - \epsilon.$$

Add to get $f(x_k) - f(\hat{y}) \geq \alpha C^2 / 2 + \epsilon$. Use the key lemma for $y = \hat{y}$ to obtain a contradiction.
COMPLEXITY ESTIMATE FOR CONSTANT STEP

• For any $\epsilon > 0$, we have

$$\min_{0 \leq k \leq K} f(x_k) \leq f^* + \frac{\alpha C^2 + \epsilon}{2}$$

where

$$K = \left\lfloor \frac{(d(x_0, X^*))^2}{\alpha \epsilon} \right\rfloor.$$

• By contradiction. Assume that for $0 \leq k \leq K$

$$f(x_k) > f^* + \frac{\alpha C^2 + \epsilon}{2}.$$

Using this relation in the key lemma,

$$\begin{align*}
(d(x_{k+1}, X^*))^2 &\leq (d(x_k, X^*))^2 - 2\alpha (f(x_k) - f^*) + \alpha^2 C^2 \\
&\leq (d(x_k, X^*))^2 - (\alpha^2 C^2 + \alpha \epsilon) + \alpha^2 C^2 \\
&= (d(x_k, X^*))^2 - \alpha \epsilon.
\end{align*}$$

Sum over k to get $(d(x_0, X^*))^2 - (K + 1)\alpha \epsilon \geq 0.$
CONVERGENCE FOR OTHER STEPSIZE RULES

• (Diminishing Step): Assume that

\[\alpha_k > 0, \quad \lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=0}^{\infty} \alpha_k = \infty. \]

Then,

\[\lim \inf_{k \to \infty} f(x_k) = f^*. \]

If the set of optimal solutions \(X^* \) is nonempty and compact,

\[\lim_{k \to \infty} d(x_k, X^*) = 0, \quad \lim_{k \to \infty} f(x_k) = f^*. \]

• (Dynamic Stepsize with \(f_k = f^* \)): If \(X^* \) is nonempty, \(x_k \) converges to some optimal solution.
DYNAMIC STEPSIZE WITH ESTIMATE

• Estimation method:

\[f_k^{\text{lev}} = \min_{0 \leq j \leq k} f(x_j) - \delta_k, \]

and \(\delta_k \) is updated according to

\[
\delta_{k+1} = \begin{cases}
\rho \delta_k & \text{if } f(x_{k+1}) \leq f_{k}^{\text{lev}}, \\
\max\{\beta \delta_k, \delta\} & \text{if } f(x_{k+1}) > f_{k}^{\text{lev}},
\end{cases}
\]

where \(\delta, \beta, \) and \(\rho \) are fixed positive constants with \(\beta < 1 \) and \(\rho \geq 1 \).

• Here we essentially “aspire” to reach a target level that is smaller by \(\delta_k \) over the best value achieved thus far.

• We can show that

\[
\inf_{k \geq 0} f(x_k) \leq f^* + \delta
\]

(or \(\inf_{k \geq 0} f(x_k) = f^* \) if \(f^* = -\infty \)).