LECTURE 20

LECTURE OUTLINE

- The primal function
- Conditions for strong duality
- Sensitivity
- Fritz John conditions for convex programming

Problem: Minimize $f(x)$ subject to $x \in X$, and $g_1(x) \leq 0, \ldots, g_r(x) \leq 0$ (assuming $-\infty < f^* < \infty$). It is equivalent to $\inf_{x \in X} \sup_{\mu \geq 0} L(x, \mu)$.

- The primal function is the perturbed optimal value

$$p(u) = \inf_{x \in X} \sup_{\mu \geq 0} \left\{ L(x, \mu) - \mu'u \right\} = \inf_{x \in X} f(x)$$

- Note that $p(u)$ is the result of partial minimization over X of the function $F(x, u)$ given by

$$F(x, u) = \begin{cases} f(x) & \text{if } x \in X \text{ and } g(x) \leq u, \\ \infty & \text{otherwise.} \end{cases}$$
PRIMAL FUNCTION AND STRONG DUALITY

- Apply min common-max crossing framework with set $M = \text{epi}(p)$, assuming p is convex and $-\infty < p(0) < \infty$.

- There is no duality gap if and only if p is lower semicontinuous at $u = 0$.

- Conditions that guarantee lower semicontinuity at $u = 0$, correspond to those for preservation of closure under the partial minimization $p(u) = \inf_{x \in X} \inf_{g(x) \leq u} f(x)$, e.g.:
 - X is convex and compact, f, g_j : convex.
 - Extensions involving the recession cones of X, f, g_j.
 - $X = \mathbb{R}^n$, f, g_j : convex quadratic.
RELATION OF PRIMAL AND DUAL FUNCTIONS

- Consider the dual function q. For every $\mu \geq 0$, we have

$$q(\mu) = \inf_{x \in X} \{ f(x) + \mu' g(x) \}$$

$$= \inf \left\{ f(x) + \mu' g(x) \right\} \left\{ (u,x) \mid x \in X, g(x) \leq u, j=1,\ldots,r \right\}$$

$$= \inf \left\{ f(x) + \mu' u \right\} \left\{ (u,x) \mid x \in X, g(x) \leq u \right\}$$

$$= \inf_{u \in \mathbb{R}^r} \inf_{x \in X, g(x) \leq u} \left\{ f(x) + \mu' u \right\} .$$

- Thus

$$q(\mu) = \inf_{u \in \mathbb{R}^r} \{ p(u) + \mu' u \}, \quad \forall \mu \geq 0,$$
• Assume that p is convex, $p(0)$ is finite, and p is proper. Then:

 - The set of G-multipliers is $-\partial p(0)$ (negative subdifferential of p at $u = 0$). This follows from the relation

 $$q(\mu) = \inf_{u \in \mathbb{R}^r} \left\{ p(u) + \mu' u \right\}.$$

 - If the origin lies in the relative interior of the effective domain of p, then there exists a G-multiplier.

 - If the origin lies in the interior of the effective domain of p, the set of G-multipliers is nonempty and compact.
SENSITIVITY ANALYSIS I

• Assume that p is convex and differentiable. Then $-\nabla p(0)$ is the unique G-multiplier μ^*, and we have

$$\mu^*_j = -\frac{\partial p(0)}{\partial u_j}, \quad \forall j.$$

• Let μ^* be a G-multiplier, and consider a vector u_j^γ of the form

$$u_j^\gamma = (0, \ldots, 0, \gamma, 0, \ldots, 0)$$

where γ is a scalar in the jth position. Then

$$\lim_{\gamma \uparrow 0} \frac{p(u_j^\gamma) - p(0)}{\gamma} \leq -\mu_j^* \leq \lim_{\gamma \downarrow 0} \frac{p(u_j^\gamma) - p(0)}{\gamma}.$$

Thus $-\mu_j^*$ lies between the left and the right slope of p in the direction of the jth axis starting at $u = 0$.

SENSITIVITY ANALYSIS II

• Assume that \(p \) is convex and finite in a neighborhood of 0. Then, from the theory of subgradients:
 - \(\partial p(0) \) is nonempty and compact.
 - The directional derivative \(p'(0; y) \) is a real-valued convex function of \(y \) satisfying
 \[
 p'(0; y) = \max_{g \in \partial p(0)} y' g
 \]

• Consider the direction of steepest descent of \(p \) at 0, i.e., the \(\bar{y} \) that minimizes \(p'(0; y) \) over \(\|y\| \leq 1 \).
 Using the Saddle Point Theorem,
 \[
 p'(0; \bar{y}) = \min_{\|y\| \leq 1} p'(0; y) = \min_{\|y\| \leq 1} \max_{g \in \partial p(0)} y' g = \max_{g \in \partial p(0)} \min_{\|y\| \leq 1} y' g
 \]

• The saddle point is \((g^*, \bar{y}) \), where \(g^* \) is the subgradient of minimum norm in \(\partial p(0) \) and \(\bar{y} = -g^*/\|g^*\| \). The min-max value is \(-\|g^*\|\).

• Conclusion: If \(\mu^* \) is the G-multiplier of minimum norm and \(\mu^* \neq 0 \), the direction of steepest descent of \(p \) at 0 is \(\bar{y} = \mu^*/\|\mu^*\| \), while the rate of steepest descent (per unit norm of constraint violation) is \(\|\mu^*\| \).
FRITZ JOHN THEORY FOR CONVEX PROBLEMS

• Assume that X is convex, the functions f and g_j are convex over X, and $f^* < \infty$. Then there exist a scalar μ_0^* and a vector $\mu^* = (\mu_1^*, \ldots, \mu_r^*)$ satisfying the following conditions:

 (i) $\mu_0^* f^* = \inf_{x \in X} \left\{ \mu_0^* f(x) + \mu^* g(x) \right\}$.

 (ii) $\mu_j^* \geq 0$ for all $j = 0, 1, \ldots, r$.

 (iii) $\mu_0^*, \mu_1^*, \ldots, \mu_r^*$ are not all equal to 0.

• If the multiplier μ_0^* can be proved positive, then μ^*/μ_0^* is a G-multiplier.

• Under the Slater condition (there exists $\bar{x} \in X$ s.t. $g(\bar{x}) < 0$), μ_0^* cannot be 0; if it were, then $0 = \inf_{x \in X} \mu^* g(x)$ for some $\mu^* \geq 0$ with $\mu^* \neq 0$, while we would also have $\mu^* g(\bar{x}) < 0$.
FRITZ JOHN THEORY FOR LINEAR CONSTRAINTS

- Assume that X is convex, f is convex over X, the g_j are affine, and $f^* < \infty$. Then there exist a scalar μ_0^* and a vector $\mu^* = (\mu_1^*, \ldots, \mu_r^*)$, satisfying the following conditions:

 (i) $\mu_0^* f^* = \inf_{x \in X} \{\mu_0^* f(x) + \mu^* g(x)\}$.

 (ii) $\mu_j^* \geq 0$ for all $j = 0, 1, \ldots, r$.

 (iii) $\mu_0^*, \mu_1^*, \ldots, \mu_r^*$ are not all equal to 0.

 (iv) If the index set $J = \{j \neq 0 \mid \mu_j^* > 0\}$ is nonempty, there exists a vector $\tilde{x} \in X$ such that $f(\tilde{x}) < f^*$ and $\mu^* g(\tilde{x}) > 0$.

- Proof uses Polyhedral Proper Separation Th.

- Can be used to show that there exists a geometric multiplier if $X = P \cap C$, where P is polyhedral, and $\text{ri}(C')$ contains a feasible solution.

- Conclusion: The Fritz John theory is sufficiently powerful to show the major constraint qualification theorems for convex programming.

- There is more material on pseudonormality, informative geometric multipliers, etc.