MIT 14.123 (2009) by Peter Eso
Lecture 12: Repeated Games

1. Finitely Repeated Games
2. Perfect Folk Theorem
3. Renegotiation Proofness

Read: FT 5.1, 5.2, 5.4; Farrell & Maskin (GEB 1989)
1. Repeated Prisoners’ Dilemma

- Unique Nash equilibrium \((D,D) \rightarrow (0,0)\).
 Pareto-optimal \((C,C)\) is not an equilibrium.

- Finite repetition, \(t = 1, \ldots, T\): The only Nash outcome is \((D,D)\) in every period.

 - By induction (similar, not \(\leftrightarrow\) to backward induction, SPE).
 In any Nash equilibrium \(\sigma^*\), both players play \(D\) in period \(T\).
 Hence for any history that has positive probability up to \(T-1\),
 player \(i\) has no incentive to play \(C\) at \(T-1\), because no matter
 what he does his opponent plays \(D\) in period \(T\) anyway.
 Induction on the number of periods gives the result. ■

- In experiments (with humans or in Axelrod’s tournament) we see cooperation.
 “Tit-for-tat” does well in reality with \(T < \infty\).
Single-Deviation Principle

•Repeated games belong to the class of multi-stage games with observable actions ("almost-perfect information games").

•**THM**: A strategy profile of a multi-stage game with observable actions (finite-horizon or infinite-horizon with continuity at ∞) is a subgame-perfect equilibrium (SPE) iff the following holds:

For any history h^t (=the play up to, not including t) and i assume

– at t and thereafter everybody except for i plays according to the proposed equilibrium strategy profile, and

– at $t+1$ and thereafter i plays the proposed strategy profile;

then i does not have an incentive to deviate at h^t.

SPE with Finite Repetition

• Set of SPE may expand even with finite repetition (not in PD).
• Ingredients: Multiple equilibria that the players rank differently, sufficiently long time horizon, and patience.
• THM (Benoit and Krishna, 1985); two players, no discounting.

 Suppose \((v_1', v_2')\) and \((v_1'', v_2'')\) are stage-game Nash eqm payoffs with \(v_1' > v_1''\) and \(v_2'' > v_2'\).

 \(\forall (v_1, v_2)\) feasible & in the shaded area, \(\forall \varepsilon > 0\), there is \(T < \infty\) such that \(G^T\) with \(T \geq T\) has SPE with average payoffs within \(\varepsilon\) of \((v_1, v_2)\).
Proof

- Choose t^* such that

$$t^*(v_1' - v_1')/2 > w_1 \equiv \max_a g_1(a),$$
$$t^*(v_2' - v_2'')/2 > w_2 \equiv \max_a g_2(a).$$

- Proposed SPE, at least $2t^*$ periods before the end of the game:

 A. Play (v_1, v_2) until time $T - t^*$ unless someone deviates.

 B. If no deviation in (A), then in the final t^* periods alternate
 between (v_1', v_2') and $(v_1'', v_2'').$

 C. If P1 deviates in (A), then play (v_1', v_2') to the end.
 If P2 deviates in (A), then play (v_1'', v_2'') to the end.

- Indeed approximates (v_1, v_2) for T sufficiently large.
Proof, continued

• Why SPE?

• Denote $t > t^*$ the remaining time.

• If no-one deviated before, P1 gets payoff $(t - t^*)v_1 + t^*(v_1' + v_1'')/2$ if conforms, at most $w_1 + (t-1)v_1' < w_1 + tv_1'$ if deviates.
 Difference: $(t - t^*)(v_1 - v_1') + t^*(v_1'' - v_1')/2 - w_1 > 0$ for conform.

• Same goes for P2 if no-one deviated before.

• If anyone deviated already, then Nash equilibrium is played in every period, subgame perfect.

• In the final t^* periods, alternate over two Nash equilibria: SPE.
2. Infinite Repetition

- Repetition without known bound (can be finite in expectation) expands the set of equilibria even in the Prisoners’ Dilemma.

- **THM**: Infinitely repeated PD, discounted payoffs with $\delta > \frac{1}{2}$: “Grim Trigger” (=play C as long as both play C, play D forever if any player ever plays D) is SPE and yields (C,C), $\forall t$.

 - Equilibrium payoff is 1 per period. Single-period deviation yields payoff 2, and 0 from then on. $1/(1-\delta) > 2$ for $\delta > \frac{1}{2}$.

- This construction is rather special: In the Prisoners’ Dilemma players can punish with stage game Nash equilibrium. This makes the infinitely repeated game equilibrium SPE.

- If the punishment is itself not an equilibrium (=not credible), then the repeated-game equilibrium is only Nash, not SPE.
Destruction By Repetition

- In the one-shot game the unique Nash equilibrium is \((A,A)\) because \(A\) is strictly dominant.

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>2,2</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>(B)</td>
<td>1,2</td>
<td>1,1</td>
<td>-1,0</td>
</tr>
<tr>
<td>(C)</td>
<td>0,0</td>
<td>0,-1</td>
<td>-1,-1</td>
</tr>
</tbody>
</table>

- \((A,A)\) in all periods is SPE for finite or infinite repetition.

- **Claim**: Infinite repetition with \(\delta > \frac{1}{2}\): \((B,B)\) \(\forall t\) is SPE outcome.

 - **Strategy** \(s^* = \{\text{Play } B \text{ at } t = 1 \text{ and } \forall t \text{ such that both players played } s^* \text{ in period } t-1; \text{ play } C \text{ at } t \text{ if someone deviated from } s^* \text{ at } t-1\}\).

 - If \(s^*(h_t) = B\): Using \(s^*\) get \(K + \delta^t + \delta^{t+1} + \ldots\); one-shot deviation to \(A\) yields \(K + 2\delta^t - \delta^{t+1} + \delta^{t+2} + \ldots\). Gain is \(\delta^t (1 - 2\delta) < 0\).

 - If \(s^*(h_t) = C\): Using \(s^*\) get \(K - \delta^t + \delta^{t+1} + \ldots\); one-shot deviation to \(A\) or \(B\) yields \(K + 0\delta^t - \delta^{t+1} + \delta^{t+2} + \ldots\). Gain is \(\delta^t (1 - 2\delta) < 0\).
General Notation

- Each period play stage game g; infinitely repeated game is g^∞. In g, players are $N = \{1, \ldots, n\}$, actions $a_i \in A_i$ for $i = 1, \ldots, n$.
- $g_i(\alpha)$ is i’s stage game payoff given a (mixed) action profile α.
- σ_i is infinitely-repeated game strategy for player i. Specifies (mixed) action a_i for all histories $h^t = (a_0^t, \ldots, a_{t-1}^t)$, $\forall t \geq 0$.
- $v_i(\sigma) = (1-\delta)\sum_{t\geq0} \delta^t \sigma(h^t) g_i(a^t|\sigma, h^t)$ is average discounted payoffs of strategy-profile σ. Comparable to per-period payoff.
- If the period-0 actions are already known, one can rewrite this as $v_i(\sigma) = (1-\delta)g_i(a^0) + \delta v_i(\sigma^c(a^0))$, where $\sigma^c(a^0)$ is the strategy profile in periods $t = 1, 2, \ldots$ induced by σ given period-0 actions a^0.
- $S(\sigma) =$ set of continuation profiles of σ after every finite history.
 Note: σ is SPE of g^∞ iff all $\sigma' \in S(\sigma)$ is SPE of g^∞.
Payoff Constraints In Any NE

- Here are two results regarding on the set of average discounted payoffs that may be the result of a Nash equilibrium of $g^T(\delta)$:

- **OBS 1**: Feasibility. If (v_1,\ldots,v_n) are the average discounted payoffs in a Nash equilibrium, then

 $$(v_1,\ldots,v_n) \in \text{co}\{(x_1,\ldots,x_n) \mid \exists (a_1,\ldots,a_n) \text{ with } x_i = g_i(a_1,\ldots,a_n), \forall i\}.$$

- **DEF**: Minmax payoff, $v_i = \min_{\sigma_{-i}} \max_{\sigma_i(\sigma_{-i})} g_i(\sigma_i(\sigma_{-i}), \sigma_{-i}).$

- **OBS 2**: Individual Rationality. If (v_1,\ldots,v_n) are the average discounted payoffs in a Nash equilibrium, then $v_i \geq v_i$ for all i.

- Suppose $(\sigma^*_i,\sigma^*_{-i})$ is NE of g^T, and construct σ_i so that $\sigma_i(h')$ is a best-response to $\sigma^*_{-i}(h')$ at every history h'. Then,

 $$U_i(\sigma^*_i,\sigma^*_{-i}) \geq U_i(\sigma_i,\sigma^*_{-i}) \geq (1-\delta)/(1-\delta^{T+1}) \left(\sum_t \delta^t v_i\right) = v_i.$$
Nash Folk Theorem For g^∞

- **THM**: If (v_1,\ldots,v_n) is feasible & strictly individually rational, then there exists $\delta < 1$ such that $\forall \delta \geq \delta$, there is a NE of $g^\infty(\delta)$ with average payoffs (v_1,\ldots,v_n).

Assume for simplicity, $\exists (a_1,\ldots,a_n) \in A$ with $g_i(a_1,\ldots,a_n) = v_i$.

- Denote m^i_{-i} the strategy-profile of players other than i that hold player i to his minmax payoff and m^i_i a best response to m^i_{-i}.

- Proposed equilibrium strategies: Each i plays
 - a_i at h_t such that (a_1,\ldots,a_n) has been played $\forall t' < t$.
 - m^i_i if player j was the first player to have deviated (or, if multiple players deviated first, simultaneously, then the lowest numbered one among them).
Proof, continued

- If player i follows this strategy, then his average payoff is v_i.

- If player i deviates in period t, then his average payoff is at most

 $$(1-\delta)(v_i + \ldots + \delta^{t-1}v_i + \delta^t w_i + \delta^{t+1}v_i + \delta^{t+2}v_i + \ldots),$$

 where $w_i = \max_{a \in A} g_i(a)$ is i’s highest feasible payoff in G.

- Deviation is not worth it if

 $$ (w_i - v_i) \leq \delta/(1-\delta) \ (v_i - v_i).$$

- Choose δ such that $\delta/(1-\delta) \geq \max_i (w_i - v_i) / (v_i - v_i).$ ■

- The theorem is useful as it characterizes the set of all Nash equilibria of $g^\infty(\delta)$, at least for high enough δ.

Why Go Beyond Nash

- Nash equilibrium is not a particularly appropriate concept for dynamic games. Reason: Incredible punishment threats.

- We can sustain \((C,C)\) in the infinitely-repeated game by P2 punishing P1 forever in case P1 ever deviates to \(D\).

<table>
<thead>
<tr>
<th></th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>1, 1</td>
<td>0, -10</td>
</tr>
<tr>
<td>(D)</td>
<td>2, 1</td>
<td>0, -10</td>
</tr>
</tbody>
</table>

- But the punishment hurts P2 more than it hurts P1; P2 may not want to carry it out.

- The example calls for requiring subgame perfection.
Perfect Folk Theorem

- THM Fudenberg and Maskin (1986). Let V^* be the set of feasible and strictly IR payoffs of G. Assume $\dim(V^*) = n$. Then, for any $(v_1, \ldots, v_n) \in V^*$ there exists $\delta < 1$ such that for all $\delta \geq \delta$, there is a SPE of $g^\infty(\delta)$ with average payoffs (v_1, \ldots, v_n).

- Wlog denote $v_i = 0$, moreover assume $\exists a \in A: g_i(a) = v_i$ for all i.

 - Pick $v' \in \text{int}(V^*)$ with $v' < v_i$ for all i.
 Let T such that $Tv'_i > w_i = \max_{a \in A} g_i(a)$.

 - Pick $\varepsilon > 0$ so that for each i,
 $v_i(\varepsilon) = (v'_i + \varepsilon) \in V^*$ and $v'_i + \varepsilon \leq v_i$.
 Let a^i such that $g_i(a^i) = v_i(\varepsilon)$.
- Denote m^i the strategy-profile that minmaxes player i. Assume that m^i is either pure, or mixing probs can be detected.

- Here is the proposed SPE. Each player i plays the following strategy, which prescribes behavior for three “phases”.

 I. Play (a_1,\ldots,a_n) as long as no-one deviates from (a_1,\ldots,a_n).
 If player j deviates from phase I then go to phase Π_j.

 Π_j. Play m^j_i for T periods, then go to phase $\Pi_{j'}$ if no-one deviates.
 If player k deviates in Π_j, then start over Π_k.

 $\Pi_{j'}$. Play a'_i as long as no-one deviates from $\Pi_{j'}$.
 If player k deviates in $\Pi_{j'}$, then go to phase Π'_k.

II. Play m^j_i for T periods, then go to phase $\Pi_{j'}$ if no-one deviates.
 If player k deviates in Π_j, then start over Π_k.

III. Play a'_i as long as no-one deviates from $\Pi_{j'}$.
 If player k deviates in $\Pi_{j'}$, then go to phase Π'_k.

Proof, finished

- Single-deviation principle in each phase.

- In phase I, deviating once yields at most \((1-\delta)w_i + \delta^{T+1}v'_i\) which is less than \(v_i = (1-\delta^{T+1})v_i + \delta^{T+1}v_i\) if \(\delta\) is close to 1, e.g., \(\delta > (1+1/T)^{1/T}\), as \((1-\delta^{T+1})v_i = (1-\delta)(1+\delta+...+\delta^T)v_i > (1-\delta)Tv_i > (1-\delta)w_i\).

- In phase II, deviation by \(i\) postpones everything by \(T\), not worth it.

- In II\(_j\), if \(i\) deviates, he gets \((1-\delta)w_i + \delta^{T+1}v'_i\); if he conforms when \(K\) periods are still left of II\(_j\), he gets \((1-\delta^{T+1-K})g_i(m^j) + \delta^{T+1-K} (v'_i + \varepsilon)\). Conform iff \(\delta^{T+1}\varepsilon \geq (1-\delta)w_i + (1-\delta^{T+1-K})g_i(m^j) + (\delta^{T+1-K}-\delta^{T+1})(v'_i + \varepsilon)\), which holds as \(\delta\) approaches 1 (LHS \(\rightarrow \varepsilon\), RHS \(\rightarrow 0\)).

- In phase III\(_i\) or III\(_j\) the proof is like in phase I: Deviation provides gains for one period, loss for \(T\) periods, not worth it. ■
3. Renegotiation Proofness

- Criticism of repeated-game SPE with “punishment phases”: Players may want to renegotiate, if both are hurt by punishment. Farrell & Maskin GEB’89 propose to consider the following.

- **DEF**: An SPE of \(g^\infty, \sigma \), is Weakly Renegotiation Proof (WRP), if \(\forall \sigma', \sigma'' \in S(\sigma), \sigma' \) does not strictly Pareto-dominate \(\sigma'' \).

- Think of \(S(\sigma) \), all possible infinite strategy profiles induced by \(\sigma \), as “the plays we agree are in the playbook”. If \(\sigma' \in S(\sigma) \) strictly Pareto-dominates \(\sigma'' \in S(\sigma) \), then the players renegotiate \(\sigma' \) to \(\sigma'' \).

- In PD, “(D,D) forever” has unique continuation, hence it is WRP. “Grim Trigger” is not WRP; it dominates continuation after (D,D).

- Internal consistency, not comparison across SPE’s.
Theorem (Farrell & Maskin ’89)

• Consider two players; normalize minmax payoffs to 0 and let V^* denote all feasible, IR payoffs.
• Suppose $(v_1, v_2) \in V^*$. If there exist actions $(a_1^1, a_2^1), (a_1^2, a_2^2)$ such that
 (1) $c_1 \equiv \max_x g_1(x, a_1^2) < v_1, g_2(a_1^1) > v_2$
 (2) $c_2 \equiv \max_x g_2(a_2^2, x) < v_2, g_1(a_2^2) > v_1$
 then for δ near 1 there is a WRP equilibrium with payoffs (v_1, v_2).

 Conversely, if σ is WRP equilibrium with payoffs (v_1, v_2), then there exist action-pairs a_1 and a_2 satisfying (1) & (2) weakly.
Proof

• First, we construct a WRP equilibrium if (1) and (2) hold.
• Suppose \((v_1, v_2) = g(a_1, a_2)\). Propose WRP equilibrium as follows:

 (I): Play \((a_1, a_2)\) until \(i\) deviates; then go to \((II_i)\).

 (II_i): Play \(a_i\) for \(t_i\) periods, such that \(t_i g_i(a_i) + w_i < (t_i + 1) v_i\).
 Then go back to (I). If \(j\) deviates from \(II_i\) then (re)start \(II_j\).

• \(t_i\) exists by \(g_i(a_i) < v_i\) and makes deviation from (I) unprofitable.
• Set \(\delta\) high enough so that \(p_i = (1 - \delta^{t_i}) g_i(a_i) + \delta^{t_i} v_i\) satisfies
 \[p_i > c_i \quad \text{and} \quad (1 - \delta)w_i + \delta p_i < v_i. \]
 Possible because \(g_i(a_i) \leq c_i < v_i\).

• Claim: Proposed strategies form WRP eqm for such high \(\delta\).
Illustration for $i = 1$

- If $P1$ deviates from (I), then (Π_1) prescribes t_1 periods of $g(a_1)$, and then v forever; payoffs are

 $z = (1 - \delta^t_1)g(a_1) + \delta^t_1v_1$.

- During (Π_1), slide to v.

- If $P1$ deviates in (Π_1), he gets $(1 - \delta)c_1 + \delta p_1 < p_1$.

- $P2$ does not deviate from (Π_1) because $g(a_1) > v_2$.

- Continuation payoffs lie between z and v, Pareto-unranked, WRP!
Proof Still Not Over

- **Second:** Given \(\delta \), if WRP eqm with payoffs \((v_1, v_2)\) exists, then there are actions \(a^1, a^2\) such that (1) and (2) hold weakly.
- We show that \(a^1\) satisfying (1) weakly exists; \(a^2\) & (2) analogous.
- Let \(\sigma\) be the WRP eqm given \(\delta\). If there is an action-pair \(a\) such that \(g_1(a) = v_1\) and \(g_2(a) \geq v_2\), and in addition, \(\max_x g_1(x, a_2) \leq v_1\) as well, then \(a\) itself satisfies (1).
- Otherwise, consider \(\sigma^1\), the worst continuation of \(\sigma\) for P1 after period 1 (prompted by a first-period action \(a'\) with \(g_1(a') \geq v_1\)). If there are multiple worst-continuations of \(\sigma\), then take the one that is best for P2.
- \(a^1 = \) initial action of \(\sigma^1\). We claim it satisfies (1) weakly.
The worst continuation of σ for P_1, σ^1, satisfies $g_1^*(\sigma^1, \delta) \leq v_1$ and $g_2^*(\sigma^1, \delta) \geq v_2$. (The former by def, the latter by WRP.)

$g_2(a^1) \geq g_2^*(\sigma^1, \delta) \geq v_2$, establishing the second inequality in (1), because $g_2(a^1) < g_2^*(\sigma^1, \delta)$ would imply that σ^1, the continuation of σ^1 after a^1, satisfies $g_2^*(\sigma^1, \delta) > g_2^*(\sigma^1, \delta)$, hence by WRP $g_1^*(\sigma^1, \delta) \leq g_1^*(\sigma^1, \delta)$, contradicting that σ^1 is the worst continuation for P_1.

The first inequality in (1), weakly, is that $\max_x g_1(x, a^1_2) \leq v_1$. We show a bit more: $\max_x g_1(x, a^1_2) \leq g_1^*(\sigma^1, \delta) \leq v_1$.

If $\max_x g_1(x, a^1_2) > g_1^*(\sigma^1, \delta)$, then P_1 could profitably deviate in the first period of playing σ^1, and since his continuation payoff cannot be lower than $g_1^*(\sigma^1, \delta)$, by definition of σ^1, the deviation would be profitable overall. Hence $\max_x g_1(x, a^1_2) \leq g_1^*(\sigma^1, \delta)$.