12.010 Computational Methods of Scientific Programming
Fall 2008

For information about citing these materials or our Terms of Use, visit http://ocw.mit.edu/terms.
12.010 Computational Methods of Scientific Programming

Lecturers

Thomas A Herring
Chris Hill
Review of last Lecture

• Looked a class projects
• Graphics formats and standards:
 – Vector graphics
 – Pixel based graphics (image formats)
 – Combined formats
• Characteristics as scales are changed
Class Projects

- Class evaluation today
- Order of presentations

<table>
<thead>
<tr>
<th>Name</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stefan Gimmillaro</td>
<td>The Sodoku Master:</td>
</tr>
<tr>
<td>Amanda Levy</td>
<td>Solar Subtense Program</td>
</tr>
<tr>
<td>Adrian Melia</td>
<td>Model of an accelerating universe</td>
</tr>
<tr>
<td>Eric Quintero</td>
<td>Encryption/decryption algorithm</td>
</tr>
<tr>
<td>Karen Sun and Javier Ordonez</td>
<td>Truss Collapse Mechanism</td>
</tr>
<tr>
<td>Melissa Tanner and Sean Wahl</td>
<td>Phase diagram generator for binary and ternary solid-state solutions</td>
</tr>
<tr>
<td>Celeste Wallace</td>
<td>Adventure Game</td>
</tr>
</tbody>
</table>
Advanced computing

- A new development is fast computing is to use the computers Graphics Processing Unit (GPU) (not Central Processing Unit CPU).
- Drivers and software are available for the NVIDIA 8000-series of graphics cards (popular card).
- Company http://www.accelereyes.com/ makes software available for Matlab that uses these features.
Example performance gains

• For image smoothing: Convolution run on GPU:
 – Mean CPU time = 7059.88 ms
 – Mean GPU time = 828.907 ms
 – Speedup (CPU time / GPU time) = 8.51709
• Matrix multiply example by size
• In-class demo of raindrop example
FFT example
GPU processing

• Matlab interface is a convenient way to access the GPU processing power but the documentation is not quite complete yet and many crashes of Matlab (even when codes have run before).
• This type of processing will get more common in the future and the robustness should improve.
• NVIDIA GeForce chip set (plus other NVIDIA processors).
• Direct C programming is also possible with out the need for Matlab
Review of statistics

• Random errors in measurements are expressed with probability density functions that give the probability of values falling between \(x \) and \(x+dx \).
• Integrating the probability density function gives the probability of value falling within a finite interval.
• Given a large enough sample of the random variable, the density function can be deduced from a histogram of residuals.
Example of random variables

- Uniform
- Gaussian
Histograms of random variables

- Gaussian
- Uniform
- \(\frac{490}{\sqrt{2\pi}} \exp(-x^2/2) \)

Number of samples vs Random Variable x
Characterization Random Variables

• When the probability distribution is known, the following statistical descriptions are used for random variable x with density function $f(x)$:

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Value</td>
<td>$< h(x) > = \int h(x) f(x) dx$</td>
</tr>
<tr>
<td>Expectation</td>
<td>$< x > = \int x f(x) dx = \mu$</td>
</tr>
<tr>
<td>Variance</td>
<td>$<(x - \mu)^2 > = \int (x - \mu)^2 f(x) dx$</td>
</tr>
</tbody>
</table>

Square root of variance is called standard deviation
Theorems for expectations

• For linear operations, the following theorems are used:
 – For a constant $<c> = c$
 – Linear operator $<cH(x)> = c<H(x)>$
 – Summation $<g+h> = <g>+<h>$

• Covariance: The relationship between random variables $f_{xy}(x,y)$ is joint probability distribution:

$$\sigma_{xy} = <(x - \mu_x)(y - \mu_y)> = \int (x - \mu_x)(y - \mu_y)f_{xy}(x,y)dxdy$$

Correlation: $\rho_{xy} = \sigma_{xy} / \sigma_x \sigma_y$
Estimation on moments

- Expectation and variance are the first and second moments of a probability distribution

\[
\hat{\mu}_x \approx \sum_{n=1}^{N} x_n / N \approx \frac{1}{T} \int x(t) dt \\
\hat{\sigma}_x^2 \approx \sum_{n=1}^{N} (x - \mu_x)^2 / N \approx \sum_{n=1}^{N} (x - \hat{\mu}_x)^2 / (N - 1)
\]

- As \(N \) goes to infinity these expressions approach their expectations. (Note the \(N-1 \) in form which uses mean)
Probability distributions

- While there are many probability distributions, there are only a couple that are commonly used:

 - **Gaussian**

 $$ f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$

 - **Multivariate**

 $$ f(x) = \frac{1}{\sqrt{(2\pi)^n |V|}} e^{-\frac{1}{2}(x-\mu)^T V^{-1} (x-\mu)} $$

 - **Chi-squared**

 $$ \chi_r^2(x) = \frac{x^{r/2-1} e^{-x/2}}{\Gamma(r/2)2^{r/2}} $$
Probability distributions

- The chi-squared distribution is the sum of the squares of r Gaussian random variables with expectation 0 and variance 1.
- With the probability density function known, the probability of events occurring can be determined. For Gaussian distribution in 1-D; $P(|x|<1\sigma) = 0.68$; $P(|x|<2\sigma) = 0.955$; $P(|x|<3\sigma) = 0.9974$.
- Conceptually, people thing of standard deviations in terms of probability of events occurring (ie. 68% of values should be within 1-sigma).
Central Limit Theorem

- Why is Gaussian distribution so common?
- “The distribution of the sum of a large number of independent, identically distributed random variables is approximately Gaussian”
- When the random errors in measurements are made up of many small contributing random errors, their sum will be Gaussian.
- Any linear operation on Gaussian distribution will generate another Gaussian. Not the case for other distributions which are derived by convolving the two density functions.
Random Number Generators

• Linear Congruential Generators (LCG)
 – \(x(n) = a \times x(n-1) + b \mod M \)

• Probably the most common type but can have problems with rapid repeating and missing values in sequences

• The choice of \(a \), \(b \) and \(M \) set the characteristics of the generator. Many values of \(a \), \(b \) and \(M \) can lead to not-so-random numbers.

• One test is to see how many dimensions of \(k \)-th dimensional space is filled. (Values often end up lying on planes in the space.

• Famous case from IBM filled only 11-planes in a \(k \)-th dimensional space.

• High-order bits in these random numbers can be more random than the low order bits.
Example coefficients

- Poor IBM case: \(a = 65539, \ b = 0 \) and \(m = 2^{31} \).
- MATLAB values: \(a = 16807 \) and \(m = 2^{31} - 1 = 2147483647 \).
- Knuth's Seminumerical Algorithms, 3rd Ed., pages 106--108: \(a = 1812433253 \) and \(m = 2^{32} \).
- Second order algorithms: From Knuth:
 \[x_n = (a_1 x_{n-1} + a_2 x_{n-2}) \mod m \]
 \(a_1 = 271828183, \ a_2 = 314159269, \) and \(m = 2^{31} - 1 \).
Gaussian random numbers

• The most common method (Press et al.)
 Generated in pairs from two uniform random number \(x \) and \(y \)
 \[z_1 = \sqrt{-2 \ln(x)} \cos(2\pi y) \]
 \[z_2 = \sqrt{-2 \ln(x)} \sin(2\pi y) \]

• Other distributions can be generated directly (e.g., gamma distribution), or they can be generated from the Gaussian values (\(\chi^2 \) for example by squaring and summing Gaussian values)

• Adding 12-uniformly distributed values also generates close to a Gaussian (Central Limit Theorem)
Conclusion

• Examined random number generators:
• Tests should be carried out to test quality of generator or implement your (hopefully previously tested) generator
• Look for correlations in estimates and correct statistical properties (i.e., is uniform truly uniform)
• Test some algorithms with Matlab: randtest.m